图片来源
视觉中国文
根新未来
众所周知,传统的计算机使用的是硅芯片,但如今,在几代计算机技术以后,科学家们已经不再满足于使用硅芯片的传统计算机——科学家们开始研究如何在试管中培育出生物有机计算机,而这种由遗传材料制成的生物晶体管的生物计算机,已经是计算机家族的第六代。
年,南加州大学教授伦纳德·阿德曼(LeonardAdleman)首次演示了DNA计算。仅仅使用DNA,阿德曼教授就解决了传统计算机无法解决的困难问题。在阿德曼进行了这次实验以后,基于DNA的电子线路已经成功实现了布尔逻辑、算术计算以及神经网络计算。现在,这个被称作分子编程的领域正在起飞,为计算机创造一个非凡的未来。
摩尔定律之后
年,《电子》杂志在创刊35周年之际,邀请了时任仙童半导体公司研究开发实验室主任的摩尔,为其撰写一篇观察评论,预测微芯片工业的前景。此时,全球半导体产业才刚刚萌芽,英特尔公司都尚未成立,市面上生产和销售的芯片更是屈指可数。摩尔根据有限的数据大胆提出了一条被后人奉为圭臬的路线图——集成电路芯片上可容纳的晶体管数目,每隔18-4个月便会增加一倍,微处理器的性能提高一倍,或价格下降一半。这就是大名鼎鼎的“摩尔定律”。
过去半个世纪里,“摩尔定律”为算力乃至生产力的发展作出了巨大贡献,同时也让整个信息技术实现了全面的迭代和更新,成为了科技创新、乃至于经济学的定律。不管有多少争议,毫无疑问的是,自从提出到现在50多年以来,摩尔定律一直都是半导体行业的金科玉律,指导着行业的发展。
年英特尔发布的第一个处理器,就采用10微米工艺生产,仅包含多个晶体管。随后,晶体管的制程节点以0.7倍的速度递减,90nm、65nm、45nm、3nm、nm、16nm、10nm、7nm等等相继被成功研制出来,现在,晶体管已经在向5nm、3nm突破。或许,就连摩尔本人都没有想到,这个定律的效力是如此持久。
但在半导体行业高歌猛进的同时,人们却又清楚,这种增长要无限地保持下去是不可能的。“增加一倍”的周期都是18个月,意味着每十年晶体管的数量要提高一百倍。这就是为什么半个世纪以来,科学家们也一直在考虑新型计算机模型的研制的原因——电子计算机的工艺制造技术终将达到极限。
在探索非传统的新型计算机模型研究中,生物计算机受到了科学家们的