核心摘要:
人工智能本质是解决生产力升级的问题,人类生产力可以归类为知识生产力和劳动生产力,人工智能走入产业后,可以分为感知智能、认知智能和行为智能,后两者更与生产力相对应,NLP和知识图谱是发展认知智能的基础。
原始数据通过知识抽取或数据整合的方式转换为三元组形式,然后三元组数据再经过实体对齐,加入数据模型,形成标准的知识表示,过程中如产生新的关系组合,通过知识推理形成新的知识形态,与原有知识共同经过质量评估,完成知识融合,最终形成完整形态上的知识图谱。
在面对数据多样、复杂,孤岛化,且单一数据价值不高的应用场景时,存在关系深度搜索、规范业务流程、规则和经验性预测等需求,使用知识图谱解决方案将带来最佳的应用价值。
年涵盖大数据分析预测、领域知识图谱及NLP应用的大数据智能市场规模约为.6亿元,预计年将突破亿元,年复合增长率为30.8%,其中年市场中以金融领域和公安领域应用份额占比最大。
随着整体市场数据基础的完善和需求唤醒,大数据智能领域规模持续走高,但在行业可落地性和理性建设的限制下,预计市场增速将呈现下降趋势,期间咨询性需求将会大量出现,从整体发展来看增速处于良性区间,对真正有价值的公司和产品有正向意义。
序言
认知智能是探寻人类学习、理解、产生决策的生物能力,并将之赋予机器的技术统称,而实现机器认知,需要突破感知泛在、意识建立、低维到高维的主观概念形成、推理决策能力唤醒,以及多模态知识持续学习等能力瓶颈,其产生的价值也将使人工智能更加贴近人类的思维方式,而知识图谱作为人类意识和概念的承载体是现阶段认知智能主要的发展方向之一。
年是知识图谱相关技术飞速发展的一年,世界顶级NLP大会ACL一次性收录了超30篇高质量知识图谱类论文,其中对于关系向量和图神经网络的论述将对知识图谱中关系补全、推理决策和认知计算带来长足发展。在国内建设应用方面,工信部发文明确指出,年将围绕工业大数据融合应用、民生大数据创新应用、大数据关键技术先导应用、大数据管理能力提升4大类7个细分方向着重发展,而知识图谱作为集大数据和人工智能于一身的综合技术,也将成为重点