译者:陈峻
近年来,自动化测试已经发生了重大的迭代。它在很大程度上协助QA团队减少了人为错误的可能。虽然目前有许多工具可以被用于自动化测试,但合适的工具一直是自动化测试成败与否的关键。同时,随着人工智能、机器学习和神经网络在各个领域的广泛运用,面向人工智能的自动化测试也需要通过合适的工具,来承担重复性的工作,以节省项目团队宝贵的时间,去执行更加复杂和关键的任务。下面,我将和您深入探讨面向未来的AI自动化测试工具。
什么是人工智能(AI)自动化测试?
AI自动化测试意味着现有的软件自动化测试工具利用人工智能和机器学习,来生成改进的结果,并消除自动化测试所面临的各种常见挑战。
尽管AI自动化测试有助于加快产品生命周期,并提高组织的营收,但是它仍处于初期阶段,需要持续改进,才能满足不同场景下具体而有独立的自动化测试需求。
人工智能如何协助自动化测试?
通常,测试人员需要维护和修改数千个测试用例。AI自动化测试工具则能够通过处理重复性的任务,生成决策所需的相关数据,以及在开发生命周期的早期阶段,检测和纠正发现的问题,在提供透明度的基础上,顺利地加快自动化测试的处理过程。同时,AI还有助于维护自动化的测试套件,简化单元、UI和API的测试。因此,我们可以归纳出如下方面的特点:
AI测试工具可以在早期检测和修复错误。对于应用中需要更改的地方,AI会使用其智能化的技术,动态修改脚本,以减轻测试人员维护测试用例的各项任务。
AI自动化工具有助于提高流程的效率和透明度。
此类工具还能以更高的准确性和速度,提高测试的输出质量。
总的来说,AI会通过提前生成相关数据,决策、检测和纠正错误,进而有助于授权、执行和维护自动化测试,并提高QA流程的效率。
人工智能在软件自动化测试中的优势
AI能够通过放大机制,来提升测试的能力范围,改变测试设备的工作方式。与传统方法相比,面向AI的自动化测试可以像人类一样学习、适应、执行、改进和决断各类复杂问题,而无需过多人工干预。AI在提高测试效率和克服自动化测试挑战方面所带来的改变是变革性的。它们主要针对的是如下痛点:
专业知识局限性
过去,一些开源的工具和不当的自动化测试工具,往往要求测试人员具备中等以上测试技能,才能创建出自动化的测试套件。但事实上,并非每一位测试人员都具有项目所需的编程技能与背景知识。
持续维护
自动化测试套件必须定期更新其对应产品的补丁和新功能。即使是使用高级的自动化测试工具,也不可避免地需要进行持续维护。例如:重构测试用例是一种常见的UI自动化挑战。它们在被创建并测试没几天后,就需要通过定期维护,来保证其适用性。
测试报告
许多自动化测试工具要么无法提供报告功能(毕竟它们中的大多数都是开源的),要么提供的信息较少,而且没有全面的洞见分析。如果您想添加额外的报告功能,则需要进行自定义的编程、或选用外部插件。
可扩展性
随着自动化测试套件数量的增长,自动化框架需要支持大量的测试,并能够以并行的方式快速地提供测试结果。此外,为了顺利地执行测试,我们也需要对测试进行优先级排序,以实现在不同的设备和配置上执行测试。
可见,要能够满足上述需求,选择合适的自动化测试工具是极富挑战的。因此,我们想到了AI是否能够给予适当的帮助。
面向未来的AI自动化测试工具
在QA团队确定需要选择什么样的AI自动化测试工具之前,他们需要了解此类工具通常能够达到什么样的效果。在此,我为您总结如下:
可以执行预测性的自我修复。即,在应用程序迭代时,自动更新测试套件。
执行智能化的缺陷捕获(BugHunting)。即,通过AI驱动的测试机制,智能地发现错误。该机制可以爬取整个应用程序,检测到问题,并修复它们。
通过应用预测性自动扩展和持续适应度函数(fitnessfunctions),来增强应用程序的鲁棒性。
不仅仅是单纯的自动化测试,它还能够自动化执行各种端到端测试的业务流程和工作流。
以下是QA团队值得