.

AIGC自动化内容生成,AI的下一个引爆

图片来源

视觉中国

晨山资本,作者

吴文超

随着5G大带宽网络时代的到来,人们对更具有视觉表现力的数字内容越来越渴望。传统数字内容的生成效率已成为新时代的瓶颈。作为下一个探索热点,「AI自动化内容生成」激发了大量行业需求,也让我们看到了人工智能技术新的引爆点。

自动化内容生成并不是第一天诞生。但过去的D/D非结构化内容生成效果不尽人意,而且遗留了很多历史问题给创业者去解决。近年来,AI在CG领域的应用,尤其是若干革命性模型的提出,给整个方向带来全新思路,其影响还在持续发酵中。但技术终将服务于商业。我们也看到,AI内容生成技术正在各类显性的商业场景中落地,创造越来越多的现实价值。

本文将阐述AI与内容生成的发展现状,探究目前技术的难点和机会,同时也会带大家从不同角度看未来的商业价值。

自动化内容生成并不是第一天出现

0百度世界大会上,百度首席技术官王海峰展示了利用AI「补全」《富春山居图》让历史画作重现当代。风格与现存真迹的一致程度也让专家大为震撼。

▲浙江博物馆馆藏《富春山居图·剩山图》局部(左),台北故宫博物院馆藏《富春山居图·无用师卷》局部(右)

▲AI补全《富春山居图》并题诗(上图红框处)

李彦宏在大会上分享了AIGC(AIGeneratedContent)将走过的三个发展阶段:

第一阶段是「助手阶段」,AIGC辅助人类进行内容生产;第二阶段是「协作阶段」,AIGC以虚实并存的虚拟人形态出现,形成人机共生的局面;第三阶段是「原创阶段」,AIGC将独立完成内容创作。

AIGC这个词听上去比较时髦,但自动化内容生成并不是个很新的概念。利用计算机辅助人类进行内容生产其实很早就出现,比如在计算机编程领域IDE的代码提示、使用OfficeWord编辑内容的错误修正,到后来利用NLG自动化文本生成等都可以算作这个范围。

近年来,承载内容的媒介越来越丰富,从最早的文本到图文、视频到D内容。同时也带来了对内容快速生产的更大诉求,激发了大家持续探索自动内容生成的动力。深度学习的出现和发展,进一步带来了从CV(ComputerVision)延展到CG(ComputerGraphics)领域的各种新尝试。让传统的通过规则、数据的富媒体内容生成方法逐步延伸到基于深度学习的内容生成。这也是目前大家狭义理解的AIGC概念。

D/D非结构化内容生成更具有挑战性

数字内容的载体越来越丰富,针对各种形态的AI内容生成的研究也越来越多,包括文字的NLG(自然语言生成)、图片/视频的自动风格迁移和生成、通过点云/图片信息自动生成D内容等。本文更加


转载请注明:http://www.abachildren.com/xgyy/2672.html